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Introduction
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Introduction to mantle convection & plate tectonics

Central open questions:
I Energy dissipation in hinge zones
I Main drivers of plate motion:

negative buoyancy forces or
convective shear traction

I Role of slab geometries
I Accuracy of rheology

extrapolations from experiments

I Mantle convection is the thermal
convection in the Earth’s upper
∼3000 km

I It controls the thermal and
geological evolution of the Earth

I Solid rock in the mantle moves
like viscous incompressible fluid on
time scales of millions of years
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Computational challenges of global-scale mantle flow
I Severe nonlinearity, heterogeneity,

and anisotropy of the Earth’s
rheology with a wide range of spatial
scales

I Highly localized features with respect
to Earth’s radius (∼6371 km), like
plate thickness ∼50 km and shearing
zones at plate boundaries ∼5 km

I 6 orders of magnitude viscosity
contrast within ∼5 km thin plate
boundaries

I Resolution down to ∼1 km at plate boundaries (uniform mesh of Earth’s
mantle would result in computationally prohibitive O(1012) degrees of
freedom). Enabled by: adaptive mesh refinement

I Velocity approximation with high accuracy and local mass conservation.
Enabled by: high-order discretizations



“Parallel, Robust GMG for Adaptive High-Order Meshes and Stokes Flow of Earth’s Mantle” by Johann Rudi

Mantle convection modeled as nonlinear Stokes flow
Rock in the mantle moves like a viscous, incompressible fluid (over
millions of years) and can be modeled as a nonlinear Stokes system:

−∇ ·
[
µ(T ,u) (∇u +∇u>)

]
+∇p = f (T )

∇ · u = 0
The viscosity µ depends exponentially on the temperature, on a power of
the second invariant of the strain rate tensor, incorporates plastic yielding
and lower/upper bounds:

µ(T ,u) = max
(
µmin,min

(
τyield
2ε̇(u) ,w min

(
µmax, a(T ) ε̇(u)

1−n
n
)))

The Newton update (ũ, p̃) is computed as the inexact solution of:

−∇ ·
[(

µ I + ε̇
∂µ

∂ε̇

(∇u +∇u>)⊗ (∇u +∇u>)
‖(∇u +∇u>)‖2

F

)
(∇ũ +∇ũ>)

]
+∇p̃ = −rmom

∇ · ũ = −rmass
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Methods & Algorithms
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Solving the discretized Stokes system
Finite element discretization:

I High-order, inf-sup stable velocity-pressure pairings: Qk × Pdisc
k−1

I Local mass conservation at the element level, discont. pressure

Coupled iterative solver with upper triangular block preconditioning:[
A B>
B 0

]
︸ ︷︷ ︸
Stokes operator

[
Ã B>
0 S̃

]−1

︸ ︷︷ ︸
preconditioner

[
u′
p′

]
=
[

f
0

]

Requires: (i) approx. inverse of the viscous stress block, Ã−1 ≈ A−1

(ii) approx. inverse of the Schur complement, S̃−1 ≈ (BA−1B>)−1

BFBT / Least Squares Commutator (LSC) method:

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

with diagonal scaling, D−1 := diag(A)−1.
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Comparison to state of the art for unstructured meshes
Solve Au = f

GMRES iteration
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Review: BFBT/LSC methods for Schur complement S̃−1

BFBT method [Elman, 1999]: pseudoinverse

S̃−1 = (BA−1B>)+ = (BB>)−1(BAB>)(BB>)−1

Least Squares Commutators (LSC) [Elman, et al., 2006]:
Find commutator matrix X s.t. (AB> −B>X) ≈ 0, by solving the least
squares problem:

Find columns xj of X s.t. min
xj

∥∥∥[AB>]j −B>xj
∥∥∥2

2

⇒ X = (BB>)−1(BAB>)

(AB> −B>X) ≈ 0 ⇒ (BA−1B>)−1 ≈ (BB>)−1(BAB>)(BB>)−1

LSC gives same result for S̃−1 as pseudoinverse.
Q: Does this work for FE discretizations?. . .

no
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Review: BFBT/LSC methods for Schur complement S̃−1

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns xj of X s.t. min
xj

∥∥∥M−1/2
1 [AM−1

2 B>]j −M−1/2
1 B>xj

∥∥∥2

2

⇒ X = (BM−1
1 B>)−1(BM−1

1 AM−1
2 B>)

⇒ S̃−1 = (BM−1
1 B>)−1(BM−1

1 AM−1
2 B>)(BM−1

2 B>)−1

Proposed scaling: For FE, use “diagonalized” velocity mass matrix,

diagonal: M1 = M2 = diag(Mu) or lumped: M1 = M2 = M̃u

Since BM−1
1 B> can be understood as a Laplace operator for the

pressure, approximate (BM−1
1 B>)−1 by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?. . .

no
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Review: BFBT/LSC methods for Schur complement S̃−1

BFBT for scaled Stokes systems that arise in geodynamics
[May, Moresi, 2008]:[

D−1/2
u 0
0 D−1/2

p

] [
A B>
B 0

] [
D−1/2

u 0
0 D−1/2

p

]
Then the standard BFBT method yields its scaled version,

⇒ S̃−1 = (BD−1
u B>)−1(BD−1

u AD−1
u B>)(BD−1

u B>)−1

Proposed scaling: heuristic, motivated by scaling of dimensional systems

[Du ]i,i = max
j
|[A]i,j |

Q: Is BFBT with this scaling effective for high viscosity variations?. . .

yes
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New view on BFBT/LSC methods (1)
Let C be symm. pos. def. and let D be arbitrary,

Find X s.t. min
X

∥∥∥AD−1B>ej −B>Xej
∥∥∥2

C−1
for all j

⇒ X = (BC−1B>)−1(BC−1AD−1B>)

And we have a C−1-orthogonal projection, i.e., the residual satisfies〈
B>ei , (AD−1B> −B>X)ej

〉
C−1

= 0 for all i, j,

therefore (
AD−1B> −B>X

)
ej ⊥C−1 Ran(B>) for all j
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New view on BFBT/LSC methods (2)
Goal: Effective and robust preconditioning of the Schur complement in
Stokes systems with high viscosity variations
Note: Condition for optimal preconditioning (BÃ−1B>)S̃−1 = I.
By choosing C = Ã, we obtain equivalence between orthogonality and
the condition for optimal preconditioning:〈

B>ei , (AD−1B> −B>X)ej
〉

Ã−1
= 0 ∀i, j ⇔ S̃ = BÃ−1B>

Choices of C,D that are computationally feasible are limited.
Our choice: C = D := diag(A), thus

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1
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Parallel geometric multigrid (GMG)
MG hierarchy: Viscous Stress

p-coarsening

geometric
h-coarsening

algebraic
coars.

p-GMG

h-GMG

AMG

direct

MG hierarchy: Pressure Poisson

discont. modal pressure space

cont. nodal function space
p-coarsening

geometric
h-coarsening

algebraic
coars.

high-order F.E.

trilinear F.E.
decreasing #cores

small #cores and
small MPI communicator

single core

I Accurate high-order L2-projection operators for restriction and
interpolation during V-cycles, and for coarsening of the viscosity

I Coarsening of full fourth-order tensor coefficient of Jacobian
I Chebyshev accelerated point-Jacobi smoothers
I Velocity null spaces are projected out to establish stable convergence
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h-dependence of GMG components & Stokes precond.
Solve Au = f

GMRES iteration
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p-dependence of GMG components & Stokes precond.
Solve Au = f

GMRES iteration
0 50 100 150 200 250

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
 r

e
s
id

u
a
l|
|

10 -6

10 -4

10 -2

10 0 Q1

Q2

Q3

Q4

Q5

Solve
(
BD−1B>

)
p = g

GMRES iteration
0 50 100 150 200 250

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
 r

e
s
id

u
a
l|
|

10 -6

10 -4

10 -2

10 0 P1

P2

P3

P4

Solve Stokes system

GMRES iteration
0 50 100 150 200 250

l2
 n

o
rm

 o
f

||
re

s
id

u
a
l|
| 
/ 
||
in

it
 r

e
s
id

u
a
l|
|

10 -6

10 -4

10 -2

10 0 Q2-P1

Q3-P2

Q4-P3

Q5-P4



“Parallel, Robust GMG for Adaptive High-Order Meshes and Stokes Flow of Earth’s Mantle” by Johann Rudi

Computational results using real Earth data
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Computational results: Solver Robustness
Robustness of linear Stokes solver w.r.t. plate boundary thickness

Plate boundary
thickness (km)

DOF GMRES #iter
for solving Au = f

GMRES #iter
for solving Stokes

15 1.16B 115 461
10 1.41B 129 488
5 3.01B 123 445

Robustness of inexact Newton-Krylov nonlinear solver w.r.t plate boundary thickness
Plate boundary
thickness (km)

DOF
(at nl. solution)

Newton
#steps

GMRES #iter
(for all Newton steps)

15 1.00B 25 3915
10 1.63B 27 4645
5 4.78B 29 6112
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Computational results: Algorithmic scalability
(Fix problem parameters and refine the mesh)
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Computational results: Weak scalability
(Increase core count and problem size simultaneously)
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Computational results: Strong scalability
(Increase core count while problem size stays fixed)
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Computational results: Contribution to science
Effective viscosity at nonlinear
solution and surface velocity

Normal stress at the surface and
surface velocity
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Summary of key contributions
I Parallel geometric multigrid for

the viscous stress block on
adaptive meshes (my impl.;
based on AMG-only solver and
parallel AMR library)

I p- and h-independent multigrid
convergence through
improvement of projection
operators (my dev.)

I Stable convergence in presence
of rotation null spaces (my dev.)

I Stable coarsening of anisotropic
fourth-order tensor coefficient in
Jacobian (my dev.)

I Geometric multigrid based BFBT;
first matrix-free implementation of
BFBT (my dev.)

I Inexact Newton-Krylov for complex
Earth rheology with dynamic mesh
refinement (my impl.; ideas in
collaboration with G. Stadler)

I Parallel optimizations, e.g., MPI
communicator reduction, OpenMP
threading (my impl.)

I Parallel scalability on full system
JUQUEEN supercomputer with
458,752 CPU cores (lead dev. in
collaboration with IBM Research –
Zürich)
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